M1.(a) (i) meter deflects then returns to zero current produces (magnetic) field / flux \checkmark change in field / flux through Q induces emf \checkmark induced emf causes current in Q (and meter) \checkmark

Deflection to right (condone left) then zero is equivalent to 1st mark.
Accept momentary deflection for $1^{\text {st }}$ point.
"Change in field / flux induces current in Q" is just \checkmark from the last two marking points.
$\max 3$
(ii) meter deflects in opposite direction (or to left, or ecf)
field / flux through P is reduced induces emf / current in opposite direction \checkmark

Ignore references to magnitude of deflection.
$\max 2$
(b) (i) flux linkage $(=n \Phi=n B A)=40 \times 0.42 \times 3.6 \times 10^{-3}$

$$
=6.0(5) \times 10^{-2} \checkmark
$$

Unit mark is independent.
Allow 6×10^{-2}.
Wb turns \checkmark
Accept 60 mWb turns if this unit is made clear.
Unit: allow Wb.
(ii) change in flux linkage $=\Delta(n \Phi)=6.05 \times 10^{-2}(\mathrm{~Wb}$ turns $)$ induced emf $\left(=\frac{\Delta(n \phi)}{\Delta}\right)=\frac{6.05 \times 10^{-2}}{0.50}=0.12(1)(\mathrm{V})$

Essential to appreciate that 6.05×10^{-2} is change in flux linkage for $1^{\text {st }}$ mark. Otherwise mark to max 1.

M2.(a) \quad emf $=\Delta(B A N) / t$
\quad Change in flux $=A \times \Delta B$ or $12 \times(23-9)$ seen
C1
Substitution ignoring powers of 10
C1
1.2 V

A1
(b) Reduced

$$
\begin{aligned}
& \text { M0 } \\
& \text { Magnet will move (with the case) } \\
& \text { Increased }
\end{aligned}
$$

MO
Flux linkage increases or emf is proportional to N
(c) (i) Formula used
$\frac{4 \pi^{2} \times 8 \times 10^{-3}}{2.6}$ seen
B1
$0.348 / 0.349$ seen to at least 3 sf
B1
(ii) Period consistent at 0.35 s or $V_{0}=8 \mathrm{~V}$

B1
Shape shows decreasing amplitude

M3.(a) Induced current such as to opposes the change producing it \checkmark
Switch on current increases the flux through Y \checkmark
Current opposite direction / anticlockwise to create opposing flux \checkmark
Switch off flux thorough Y due to X decreases so current travels clockwise to create flux to oppose the decrease \checkmark
one marks for Lenz's law statement
two for explaining what happens at switch on OR switch off adequately
one for completing the argument for switch on and off adequately

M4.B

M5.C

M6.D

M7.D

M8.B

M9.D

M10.(a) (i) 60 (degrees) \checkmark
(ii) angle required is 150°
which is $5 \pi / 6$ [or 2.6(2)] (radians) \checkmark
Correct answer in radians scores both marks.
(b) (i) (magnitude of the induced) emf \checkmark

Accept "induced voltage" or "rate of change of flux linkage", but not "voltage" alone.
(ii)
frequency $\left(=\frac{1}{T}\right)=\frac{1}{40 \times 10^{-3}} \checkmark(=25 \mathrm{~Hz})$
no of revolutions per minute $=25 \times 60=1500$
1500 scores both marks.
Award 1 mark for $40 \mathrm{~s} \rightarrow 1.5 \mathrm{rev} \mathrm{min}^{-1}$.
(iii) maximum flux linkage $(=B A N)=0.55$ (Wb turns) \checkmark
angular speed $\omega\left(=\frac{2 \pi}{T}\right)=\frac{2 \pi}{40 \times 10^{-3}} \checkmark \quad\left(=157 \mathrm{rad} \mathrm{s}^{-1}\right)$
peak emf $(=B A N \omega)=0.55 \times 157=86(.4)(V) \checkmark$

